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Abstract

The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric
cloud event that occurred on 26 November 1991 is examined. The case under consideration
occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville,
KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network
and a temporally and spatially augmented radiosonde array, emphasis is given to explaining
the evolution of the kinematically-derived ageostrophic vertical circulations and correlating
the circulation with the forcing of an extensively sampled cloud field. This is facilitated by
decomposing the horizontal divergence into its component parts through a natural coordinate
representation of the flow. Ageostrophic vertical circulations are inferred and compared to
the circulation forcing arising from geostrophic confluence and shearing deformation derived
from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical
circulation existed in association with a jet streak exit region. The circulation was displaced
to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening
diffluent trough and building ridge. The cloud line formed in the ascending branch of the
vertical circulation with the most concentrated cloud development occurring in conjunction
with the maximum large-scale vertical motion. The relationship between the large scale
dynamics and the parameterization of middle and upper tropospheric clouds in large-scale
models is discussed and an example of ice water contents derived from a parameterization
forced by the diagnosed vertical motions and observed water vapor contents is presented.
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1. Introduction

In his review article, Liou (1986) states that cirrus clouds are one of the most
important yet least understood components of the climate system. Covering as much as one-
third of the earth's surface and having unique microphysical and radiative characteristics,
cirrus undoubtedly has a profound influence on climate. The ability to characterize
accurately these upper-tropospheric ice-phase clouds in General Circulation Models (GCMs)
has long been recognized as a serious shortcoming of present-day simulations of future and
past climate. Cirrus clouds present a multi-faceted challenge that spans the entire range of
the cloud parameterization problem. At the smallest scales, the optical characteristics of
cirrus that stem, in large part, from complicated crystal characteristics, are not well known
and, therefore, difficult to accurately represent in a GCM parameterization. At smaller
scales, cirrus clouds owe their existence primarily to turbulent motions. However, as shown
in the modeling studies of Starr and Cox (1985a and b), the meso-synoptic scale ascent is
quite important to the evolution of the macroscopic cloud properties. ~Macroscopic
characteristics such as cloud thickness, aerial coverage and optical depth have been shown to
be quite sensitive to the large-scale vertical motion. This sensitivity to the large-scale ascent
contributes to the mesoscale organization of cirrus cloud systems documented in several case
studies (Sassen, et al., 1989, Starr and Wylie, 1990).

The fact that cirrus cloud systems tend to be organized on scales approaching that of
current GCMs makes realistic parameterization of cirrus an achievable goal. This presumes
that relationships between the model dynamics and thermodynamics and the occurrence and
characteristics of non-convective cirrus cloud are well understood. This is not, however, the
case. Most GCMs diagnose the presence of supersaturation clouds in the upper troposphere
based on undocumented relationships between cirrus occurrence and relative humidity
(Slingo, 1987). The optical properties are, then, specified based on cloud height. While the
humidity undoubtedly plays a crucial role in the existence of cirrus clouds, well-established
statistical relationships between upper tropospheric relative humidity on any scale and the
resulting cloud fraction, cloud depth or optical characteristics do not as yet exist. This is
largely due to the difficulty of accurately measuring water vapor content at cold upper
tropospheric temperatures (Starr and Melfi, 1991). As pointed out by Slingo (1987), several
additional parameters may be useful in leading to correct diagnoses of the presence of cloud.
These are the vertical velocity, stability and vertical wind shear. Considering the coarse
vertical resolution of most GCMs relative to the observed scales of many cirrus layers (Starr
and Wylie, 1990), Richardson Number considerations would not be useful as a diagnostic



since they ultimately depend on the depth over which the vertical finite differencing is
conducted. This was shown in a radiosonde study by Starr and Cox (1980) where
Richardson Numbers were found to be poor predictors of the presence of cirrus. The vertical
resolution of the soundings they used was somewhat finer than that of most GCMs.

An example of a physically based parameterization that uses the large scale vertical
velocity and the observed relative humidity is the ice water content parameterization
described by Heymsfield and Donner (1990; hereafter referred to as the HD
parameterization).  This parameterization uses an expression that balances crystal
sedimentation with vapor deposition. Ultimately, it is the large scale vertical velocity and the
water vapor availability that determine the quantity of ice in a particular layer. Essentially,
the HD parameterization is a diagnostic synthesis of the physics used in the cirrus model of
Starr and Cox (1985a).

In a recent study, Soden and Donner (1994), using ECMWF analyses and ISCCP
cloud products, demonstrated that the HD parameterization is able to capture the spatial
variability of optical depth on global scales. However, they noted large discrepancies
between the absolute values of the parameterized and satellite-derived optical depths. While

several factors may have contributed to the dlfferences, the largely unknown relanonshlp

between large scale vertlcal velocny and c1rrus rmcrophyswal characteristics certamly'

contributed. This is evidenced by a strong latitudinal dependence of the dlscrepanmes in
their July study, the largest differences occurring in the southern hemisphere. While model
error may have been a factor in the data-sparse Southern Hemisphere, it is equally likely that
the cirrus formed in the baroclinic regions of the Austral Winter was fundamentally different
from the cirrus formed in the more convectivley active tropics and summer hemisphere. The
relationship between the bulk optical characteristics of cirrus and the synoptic regime in
Wthh they form is not presently understood This lack of knowledge Tepresents a
funda ental defic1ency 1n our ab'l' characterize : accurately cloud chmate mteracnon in
Gcﬁ., L T [
An improved understanding;'efiinedngmnmneous radiative transfer through observed
cirrus will not benefit climate prediction efforts unless a concomitant connection is achieved
unambiguously between the clouds being studied and the actual dynamics on multiple scales.
Furthermore, even though a correct diagnosis of the large-scale ascent and upper tropospherlc

hurmdltles is crucial, s1mply knowmg these quantltles is msufflclent The radiative

characteristics of cirrus in a partlcular situation are undoubtedly a reflection of the history of
the airmass in which they have formed (Sassen et al. 1994). The evolution o. the vertical
motions and the upper tropospheric water vapor fields must be placed into the context of the
evolving dynamics. In short, to advance toward the stated goals of FIRE (Starr, This Issue),
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it 1s requisite upon us to quantitatively connect the observed radiative transfer and
microphysics to a thorough and verifiable explanation of the observed GCM-resolvable large
scale dynamics.

The association of cirrus with midlatitude synoptic regimes has a long history in the
literature (Stone, 1957; Conover, 1960). Heymsfield (1977) presented a detailed aircraft-
based study of cirrus formation in a spectrum of midlatitude synoptic situations. Shapiro
(1978) suggested using satellite-observed cirriform cellular structure as a means of
diagnosing the turbulent scales associated with certain jet flows. Sassen et al. (1989) using
. lidar and radiosonde data, correlated the occurrence of cirrus with subtropical jet streams and
elevated frontal zones. Using radiosonde network analyses and surface-based lidar and
aircraft observations, Starr and Wylie (1990) analyzed several cirrus events associated with
the passage of a jet streak and upper tropospheric ridge. They found strong evidence for
mesoscale organization of the cloud decks and noted that the cirrus formed in association
with lower tropospheric weather systems although this association was due to a natural
superposition of separate forcings rather than a common cause. They demonstrated that large
scale vertical motions in the cirrus generating regions tended to be about 5-7 cm s-1 although
unambiguous estimates of the large-scale ascent could not be made in all cases.

In explaining the meso- and larger-scale dynamics of the cirrus events presented
below, we will couch the explanation in terms of vertical circulations forced in jet flows
(Keyser and Shapiro, 1986). In a straight jet streak with negligible thermal advection,
transverse ageostrophic motions associated with along-stream parcel accelerations lead to
thermodynamically direct (indirect) vertical circulations in the jet entrance (exit) region. The
vertical branches of these cells tend to straddle the jet axis with the relative magnitudes of the
vertical and horizontal branches proportional to the potential vorticity, as can be seen by
examining the Sawyer-Eliassen equation (Keyser and Shapiro, 1986). More generally the
thermal advection cannot be neglected owing to the phase lags betweea the thermal and
momentum fields. Therefore, cold (warm) air advection is typically found in the entrance
(exit) region. The combined effect of thermal advection and horizontal shear tend to shift the
vertical circulations laterally. For instance, cold air advection in the entrance region of jet
tends to shift the transverse ageostrophic circulation to the anticyclonic side of the jet axis.
The placement of the descending branch beneath the jet axis in the entrance region occurs in
association with elevated frontal zones and tropopause folds (Keyser and Shapiro, 1986).
Arguing from gradient wind concepts, Keyser and Shapiro (1986) conjectured that when a jet
is placed at the base of a long-wave trough, the along-stream ageostrophic motions induced
by flow curvature will reinforce the vertical branches of the ageostrophic motions. It is the
modulation of the ascending branches of the ageostrophic circulations by the flow field



dynamics and their superposition with the upper tropospheric moisture field that are of direct
importance to the development and maintenance of cirrus cloud decks. For instance, Sassen
et al. (1994) describe several cirrus events that displayed unusual microphysical and optical
characteristics. It was shown that the characteristics of these clouds came about through
complicated history of tropopause folds associated with polar and subtropical jet streaks.
The injection of stratospheric aerosol into the upper troposphere interacted with subtropical
moisture layers in the jet entrance régioné to form these clouds. The dynamical history of the
airmass was all-important to the resulting cirrus cloud characteristics.

Placing cloud evolution into a dynamical context can be accomplished quite
efficiently using cloud-resolving mesoscale models (Jensen et al., this issue). However, in
such studies it is difficult to attribute discrepancies between observation and model output to
the simulated dynamics or the cloud modeling algorithm. In order to compliment the
mesoscale modeling efforts, we have implemented an analysis scheme based exclusively on
combined wind profiler and radiosonde data. While a measure of uncertainty exists in the
data, this uncertainty is genefally quantifiable and places known bounds on the objectively
analyzed quantities. The resulting description of the synoptic scale dynamics represents a
ground truth against which finer-scale models can be compared.

While the dynamical characteristics of elevated jet streaks have been discussed
theoretically and diagnosed in the output of idealized models, few studies have used
observations. A notable exception is the work of Shapiro (1981) who solved the Sawyer-
Eliassen equation with the forcing defined via analysis of radiosonde and aircraft data. He
demonstrated that horizontal shear of the geostrophic wind in the cross-stream direction
acting on along front thermal gradients can force mid-tropospheric subsident motions. The
front examined by Shapiro displayed a direct vertical circulation in the lower troposphere
while an indirect circulation was diagnosed in the upper troposphere. More recently, Sanders
(1990) examined an intense northwesterly jet and investigated the evolution of the potential
vorticity field and strong subsidence beneath the jet core forced by cold air advection.
Cammas and Ramond (1989) used ECMWF analyses to decompose the horizontal divergence
and ageostrophic wind in a natural coordinate reference frame to show that the association of
flow curvature with along-stream speed accelerations can significantly modify the classical
models derived from the Sawyer-Eliassen equation and gradient wind concepts.

We will adopt the conceptual approach of Cammas and Rammond (1989) in this
study. Working from objectively analyzed wind profiler and radiosonde data, the transverse
ageostrophic circulation and its associated forcing will be estimated. The vertical
circulations will be combined with analyses of the thermodynamic and water vapor structure
in the upper troposphere to describe the evolution of a middle and upper tropospheric cloud
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field sampled during the FIRE Cirrus-II field campaign. The diagnosed dynamics and
thermodynamics will be combined with the water vapor field in the HD parameterization to
demonstrate the advantage of using data-based techniques to evaluate and improve cloud

parameterizations.
2. Data Processing and Analysis Techniques

The goal of the analysis presented herein is to document the evolution of the synoptic
scale dynamical mechanisms important to regional cloud formation. Given typical spacing
between observing points of 175-200 km, the characteristics of the synoptic scale dynamics
are well resolved. While the dynamics on the mesoscale can be inferred from the data in
certain cases, the spacing between data points precludes a quantitative analysis of the spatial
characteristics of the meso- and smaller-scale features. Therefore, the data processing and
analysis techniques described below are specifically designed to remove atmospheric signal
below the spatial resolution of the network.

2a. Initial Processing of Wind Profiler Data

The diagnostic analyses presented below rely exclusively on data collected from the
Wind Profiler Demonstration Network (WPDN; Chadwick, 1986) and the spatially and
temporally augmented conventional radiosonde network. Fig. 1 shows the geographic
distribution of the radiosonde network and WPDN as it existed in November 1991. The
WPDN, composed of 18 profilers, existed in a roughly 350 km wide swath from southeast
Wyoming to northern Louisiana. We will refer to the hexagonal array of wind profilers
centered on the Lamont, OK (LMN) profiler as the inner array of the WPDN. Coffeyville,
KS, the operational hub of the FIRE CIRRUS-II IFQ, is located at the northeast vertex of the
inner array approximately 30 km south of the Neodesha, KS (NDS) profiler. Note that a
special network of four cross-chain linked atmospheric sounding systems (CLASS) was
situated such that Coffeyville was centered on the eastern side of an approximately
equilateral triangle. The location of an array of National Weather Service (NWS) radiosonde
stations that conducted three hourly soundings during the case study period are also shown in
Fig. 1. The operational modes of the radiosonde networks (CLASS and NWS) are described
by Starr (this issue). 7 o

The WPDN wind profilers, which operate at a frequency of 404.37 MHz, a
wavelength of 74 cm, provide two modes of data sampling, a high mode and a low mode.
The low mode is designed to sample the lower troposphere and provides measurements from



500 m above ground level (AGL) to 9.25 km AGL. The vertical resolution in this mode is
250 m with 250 m gate spacing. The high mode provides measurements from 7.5 km to
16.25 km AGL. This mode provides 1 km vertical resolution and 250 m gate spacing.
Shorter pulse widths are used in the low mode and enable a higher vertical resolution.
However, low signal to noise frequently becomes a problem for this mode above
approximately five to six kilometers. Therefore, the high mode observations are always used
where the modes overlap, sacrificing vertical resolution for better overall data quality in the
middle troposphere. For further details concerning wind profiler technology, the reader is
referred to Gage and Balsley (1978). The wind profiler data used in this study are hourly
averaged horizontal winds derived from the six-minute Doppler moments. As described in
detail by Mace (1994), a consensus averaging scheme (Strauch et al., 1981; Fischler and
Bolles, 1984) was applied to remove erroneous observations from the moments time series.
After converting the radial velocities to horizontal components, a running hourly average,
centered on the nominal observation time, was applied to create the hourly mean horizontal
winds. The hourly averaged winds were hand filtered to remove any obviously bad data
from the time series and all winds were linearly interpolated to 250 m height increments
above mean sea level up to 15 km. This technique was applied to all data collected by the
WPDN profilers during the FIRE Cirrus-1II field campaign.

The regional proximity of the WPDN to the FIRE Cirrus-II operational area provides
an opportunity for investigation of the wind field throughout the troposphere and lower
stratosphere. Apart from the obvious sampling differences between radiosondes and wind
profilers, the primary advantage of the WPDN observations is their nominal 1 hour temporal
resolution. However since the length scales resolved by observations spaced at
approximately 250 km are on the order of 1500-2000 km (Thiebaux and Pedder, 1987;
Davies-Jones, 1993; Mace, 1994), one hour temporal resolution may be more than is needed
to adequately characterize the synoptic-scale evolution of meteorological features.
Therefore, to take full advantage of the temporal resolution of the WPDN data, a time-space
conversion scheme is applied. Described in Appendix A, this algorithm takes the
observations collected 1 hour before and after a particular time and places them along a
curved trajectory streamline estimated from the spatial and temporal characteristics of the
wind field. The assumption is made that the only acceleration acting on the air parcels is the
centripetal acceleration required to maintain the parcels on the curved trajectory. While this
scheme effectively coarsens the temporal resolution to 3 hours, the number of observations
available every third hour increases substantially, thereby, decreasing the uncertainty in
horizontal derivatives diagnosed from the wind fields (Davies-Jones, 1993). This is
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especially advantageous in the inner array of the WPDN where, under ideal circumstances, a

2b. Initial Processing of Radiosonde Data

All radiosonde data collected during FIRE Cirrus-II were processed at full vertical
resolution. The raw NWS radiosonde data has six second (roughly 30 m) vertical resolution
and consists of temperature, pressure, humidity and elevation and azimuth angles.
Processing of the raw data combined several steps designed to generate a research product
interpolated to pressure levels at 40 to 60 meter vertical resolution. The data were scanned
for obvious or potential errors such as increasing pressure with height or for values that had
been previously flagged or interpolated by the NWS processing routines. The raw pressure,
elevation and azimuth angle data were smoothed usihg a variable-width, multi-pass
regression technique that was designed to reduce Root Mean Square (RMS) uncertainty in
the derived products. Using the smoothed pressure time series, the time series of standard
pressure levels was determined and the observed temperature and relative humidity profiles
were interpolated to the standard levels. Location information was generated at the standard
pressure levels using the smoothed elevation and azimuth angles. Horizontal winds were
then calculated using a centered differencing scheme with the location data. Quality flags
were assigned to each sounding using manual inspection.

Further processing of the radiosonde soundings was motivated by the desire to
combine the mass and water vapor fields observed by the radiosondes with simultaneous
WPDN wind observations. While both sets of observations ultimately compliment one
another, meshing data from the two observational platform types into a dynamically
consistent whole needs to be carefully considered. The wind profilers provide horizontal
wind velocities in 250-meter layers. The hourly wind reported within a layer closely
approximates a true average, being composed of several six-minute time integrations of the
backscattered radar energy from that volume. Radiosondes, however, report nearly
instantaneous thermodynamic quantities at approximately 30-meter vertical intervals. Since
a radiosonde flight takes 1-2 hours and the sensor typically drifts several tens of km during
the flight, the vertical profile of a sounding is a collection of individual point measurements,
each a function of latitude, longitude, elevation and time. The four dimensionality of a
sounding is typically not a problem when considering data from the operational radiosonde
network. With soundings at 12-hour intervals and sépafaterdi by 400 km, 50-km drift over a
couple of hours does not introduce significant error when considering the temporal and
spatial scales that can be resolved by the conventional network (Sanders, 1988). However,



during the FIRE Cirrus-II field deployment, radiosonde sites in the Kansas-Oklahoma region
were separated by less than half the normal spacing (Fig. 1) and the temporal resolution was
enhanced much of the time (Starr, This Issue). Therefore, taking full advantage of the
combined radiosonde and wind profiler networks requires a careful accounting of balloon
drift and the temporal characteristics of the observations.

The temporal and vertical coordinates defined by the wind profiler observations are
specified as the coordinate values to which the radiosonde data are interpolated. This choice
is intuitive since enough information exists in each radiosonde sounding to unambiguously
interpolate the data to any vertical coordinate; this is clearly not the case for the wind
profilers. Additionally, regional kinematic analyses using the wind profiler data are possible
at a much finer temporal resolution than from the radiosonde data. For consistency,
therefore, physical height will be used as the vertical coordinate in this work.

So that the radiosonde and wind proﬁler data can be combined into a single

dlagnostlc framework, the vertlcal resolutlon of the radlosonde data were coarsened and the

nommal times of the wind proﬁlef ‘observations. The soundmgs were vertically averaged to
the same 250 meter height increments as the wind profiler data using all available
observations 125 m above and below each profiler data level. All data elements in the
sounding were treated in this way including the latitudes, longxtudes and times of each

observation. After performing the vertical ‘averaging on a time series of soundings from a

particular observing site, the layer-mean time values were used to temporally interpolate the
vertically averaged temperature, pressure, specific humidity, « and » wind components and
latitude and longitude to the top of each hour to match the nommal valid times of the hourly
wind proﬁlczriciata T : "

This technique, which is similar to one described by Frankhauser (1969), accounts for
the drift in the radiosonde during flight and for the time interval of the ascent. Thus,
displacements of the sensors in both space and time are considered when performing spatial
objective analysis of the data. The most obvious limitation is the temporal resolution of the
soundjngs relative to the wind profiler observations. Therefore, in practice, diagnostics that

rcqulre thermodynaxmc mformatlon w111 only bC performcd at the nommal sounding times.

Also, only temporally enhanced soundmg penods (3 6 hourly) are cons1dcred when temporal
derivatives of the thermodynamic data are necessary. These processing techniques were
applied to all radiosonde data collected during FIRE Cirrus-IL.

2c. Spatial Objective Analysis of Wind Profiler and Radiosonde Data
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After the initial processing steps have been completed, the wind and thermodynamic
data tend to be randomly distributed over the analysis region. In principle it would be
possible to perform spatial objective analysis using the function surface ﬁttiﬂg techniques
traditionally applied to data of these types: namely, to divide the analysis domain into data
polygons, perform function surface fitting of low order polynomials to the polygon centroids
and conduct a diagnostic analysis directly from the centroid-analyzed data fields (Zamora et
al, 1987; Carlson and Forbes, 1988). As shown by Davies-Jones (1993), however, direct
examination of the polygon centroid values tends to be most applicable to smaller data
networks (from three to seven or so data points) that extend over limited geographical
regions. When applied to extended arrays with a variable spatial distribution of data points,
it becomes difficult to optimize the function surface fitting technique to reduce the
uncertainty in observational and aliasing error at the polygon centroids. Furthermore,
interpretation of the centroid results from several polygons is uncertain since polygons of
varying spatial extent and geometry have different responses to observational error and to
meteorological features below the resolution of the data network (Mace, 1994). Therefore,
we choose a slightly more involved process that is designed to minimize the influence of
observational and aliasing uncertainty.

Initially, the observations are mapped to a 1° latitude-longitude grid using the
bivariate interpolation scheme described by Akima (1978, 1984). This algorithm uses the
irregularly distributed data point positions to divide the analysis domain into triangular cells.
A bivariate quintic polynomial is then fitted to these cells. Interpolation to the latitude-
longitude grid is performed using a fifth-order polynomial with coefficients determined from
the data triangles. Interpolation from the grid points back to the data points returns the input
values to within machine precision. Accuracy away from the data points depends largely on
the spatial density of the observations. Not surprisingly, spurious oscillations of the
interpolated values are noted when the interpolation grid is much finer than the density of the
observations. In order to avoid this undesirable characteristic, the diagnostic domain we
consider for quantitative analysis is restricted to the region bounded by the wind profiler
locations and enhanced (Fig. 1) radiosonde sites. However, all wind profiler and radiosonde
sites available are used at each analysis time. In other words, each analysis encompasses
most of the western two-thirds of the continental United States. Also, it should be noted here
that the radiosonde-observed winds are not used in Kansas or Oklahoma. Inclusion of the
radiosonde winds into the wind field analysis in this region caused sharp discontinuities in
the time-series of kinematic quantities. This inconsistency is likely a reflection of the vastly
different measurement strategies employed by wind profilers and in calculating horizontal
winds from radiosondes. The wind profilers sample volumes of air in a height range as the
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air passes over the instrument. Here we average these volume means for one hour.
Radiosonde winds, on the other hand, are computed from a single horizontal displacement at
a particular time. Radiosonde winds are, therefore, much more likely to contain components
from much smaller scales of motion: scales that could not be resolved by the current
obsevational network. These smaller-scale components are likely averaged out of the wind
profiler winds. Therefore to maintain consistency in the analysis product, only the profiler
winds are considered in the Kansas-Oklahoma region.

The interpolation scheme maps the observed fields exactly without consideration to
objective analysis uncertainties. Therefore, the mapped fields are considered to be equivalent
to the data in every way. By this it is meant that the observational quantities (u, o, T p, 9)
now distributed on the regular grid contain the desired large-scale atmospheric signal, as well
as contributions from random observational error and from atmospheric signal of scale below
the network's spatial resolution. Our analysis goal is to filter the data such that only the
desired atmospheric signal remains. As shown by Thiebaux and Pedder (1987) and Davies-
Jones (1993), this analysié gdal can be addressed by using overdetermined low-order
polynomials fitted to data in a least squares sense. Applying these techniques reduces the
magnitude of objective analysis uncertainties in a predictable way. Assuming that the
minimum length scale that can be resolved accurately by a network with 250 km spacing is
about 2500 km, a spatial filter based on an overdetermined plane surface is applied to the
gridded observations. The distribution of input data and an amplitude response curve of the
spatial filter is shown in Fig. 2. The spatial resolution of the smoothed data fields tends to be
2 degrees latitude by 2 degrees longitude. The RMS uncertainty of the analyzed quantities is
approximately n5x10'6 where 1 is the uncertainty in the observed quantity. By interpolating
the filtered wind fields back to the wind profiler locations, the amount of smoothing can be
examined. Shown in Fig. 3, the RMS difference of the smoothed to the original data is 3.5
ms-1.  While the accepted uncertainty in the wind profiler data is near 2 ms1 O the
additional smoothing can be attributed to meteorological features below the specified
resolution of the analysis grid.

3. Case Study: November 26, 1991

The region we will concentrate on for quantitative analysis is bounded by southern
Nebraska, eastern Colorado, northern Texas, and western Missouri and Arkansas. This area,
which encloses the densest network of wind profiler and radiosonde sites (Fig. 1), will be
referred to as the analysis domain. Within this domain, the wind observations are supplied
exclusively by the WPDN. Outside of this region, the radiosonde-derived winds are used in

12

i1



the objective analysis scheme by are not displayed here or copsidered for quantitative
application. We examine the period from 18 UTC 26 Nov. 1991 to 00 UTC 27 Nov.
1991 (27/00). This period is chosen for several reasons. All radiosonde sites in the western
two-thirds of the United States began a three hourly launch schedule at 26/12. This enhanced
sounding period coincided with two distinct synoptic-scale upper tropospheric cloud systems
west of the Mississippi, one of which propagated through the analysis domain and was
sampled by surface-based instrumentation and research aircraft at Coffeyville.

3a. Synoptic Setting

The synoptic setting for this period is shown in Fig. 4a and b. A low-amplitude
ridge-trough pattern was established over North America early on 26 November.
Northwesterly flow in the upper troposphere ahead of the offshore ridge existed over the
West Coast while a broad diffluent trough is analyzed in the central United States. A strong
jet is embedded in the northwesterly flow over the western third of the United States. Speed
maxima of more than 60 ms-1 were observed by radiosondes in southwestern Wyoming and
the Pacific Northwest. In the Kansas-Oklahoma region, wind speeds decreased substantially
compared to the West and the flow became diffluent in the upper troposphere. At the
surface, the western United States was dominated by a region of high pressure under the
broad upper level ridge while low pressure and an associated frontal system were situated in
the central United States. The analysis area was influenced by a broad southerly flow east of
the surface trough. The southerly flow extended from the Gulf of Mexico into southern
Canada. ,

By 27/00 a general amplification of the long-wave pattern is noted. Heights were
rising over the Rocky Mountain states at 300 mb (Fig. 4c) while height falls occurred over
the Pacific coast and central United States. A low-amplitude trough is evident at 300 mb
extending from the western Gulf of Mexico into southern Canada. The northwesterly jet had
become firmly established in the region of rising heights over the Rocky Mountain states.
The exit region of the jet had propagated into the analysis domain and a strong wind speed
gradient existed from east Texas northward to the Dakotas. At the surface (Fig. 4d), the low
in the north-central United States and the associated frontal system had propagated eastward
and deepened slightly.

Fig. 5 shows GOES infrared (IR) imagery for this period. While cold cloud tops
denoting optically thick cirrus cover much of the western one-half of the United States, two
identifiable broad-scale features can be identified. The eastern-most of these is oriented
perpendicular to the upper tropospheric flow and extends through central Oklahoma and into
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central and eastern Kansas. The east-west scale of this system increases considerably in the
northern Plains and extends from central Nebraska to the western Great Lakes. This system
bears a resemblance (at least in its southern portions) to a baroclinic leaf cirrus system
(Weldon, 1979: Starr and Wylie, 1990). This system appears to be correlated with the
deepening surface low and amplifying upper tropospheric disturbance identified above.
Cirrus westward of the Rocky Mountains, on the other hand, is associated with the
amplifying upper-tropospheric ridge.  Cloud patterns here suggest an along-stream
orientation with optically thick cirrus occurring near the ridge axis and progressively thinner
and more patchy clouds extending to the flow inflection downstream of the ridge axis. This
large-scale cloud pattern is readily classified as a ridge-crest cirrus system in accordance with
Starr and Wylie (1990).

3b Kinematic Analysis

The 10 km profiler-derived wind field in the analysis region at 26/18 and 27/00 is
shown in Fig. 6. This height corresponds to the level of maximum wind speed in the
northwesterly jet. The strong speed gradient associated with the exit region of the
northwesterly jet is quite evident. A well-defined minimum in horizontal wind speeds can be
seen in association with the trough axis that extended through central Oklahoma and Kansas
at this time. By 27/00, the main features in the wind field at 10 km had propagated eastward
at approximately 12 m s-! (Fig. 6b). The region of sharpest cyclonic turning in the wind
field is now analyzed in extreme western Missouri and Arkansas. The jet axis is now clearly
identifiable extending through Colorado into the Panhandle chlon of Oklahoma. The -
intense 1sotach gradxcnt bctween the jet core ‘and trough ax15 1s squarely within the wind
profiler network at this time. It is qulte;;udent that air ex1t1ng the jet core in western
Oklahoma experienced rapid deceleration as it flowed southeastward toward the trough axis.

The horizontal divergence and relative vorticity at 10 km are shown in Fig. 7. At
26/18, a maximum in positive vorticity is located over the panhandle of Oklahoma with
positive values cxtcnding éz{stii/éfﬁ io Qé§t€fﬁ ﬁiéébuﬁ"and Arkansas. The &ough axis that
was situated in eastern Oklahoma at 26/ 18 (Flg 6b) is not clearly delineated in the vortlcxty
field. The observed vort1c1ty over Oklahoma and Kansas will be shown to be due to
horizontal speed shear associated with the jet and cyclonic turning in the low amphtude
trough. By 27/00, however, the north-south oriented axis of positive vorticity (Fig. 7d) is
more clearly aligned with the trough axis identifiable in the wind field (Fig. 6b). Values near
the trough axis have increased during the previous six hours. This is indicative of an overall

amplification of the upper tropospheric wave pattern.
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The horizontal divergence at 10 km is also closely coupled to the advancing jet streak
and to the short-wave trough. At 26/18, an axis of positive horizontal divergence was
oriented through central Oklahoma west of the trough axis and east of the maximum wind
speed gradient (Fig. 7a). Convergence was diagnosed in the speed gradient from the
panhandle region, northward. At 27/00 (Fig. 7c), the southern portion of the divergence axis
at 10 km had shifted eastward with the propagating and evolving wind field while the more
northerly portions had remained stationary. This is consistent with the jet core advancing
into Oklahoma and the trough axis moving eastward. Also, the maximum in horizontal
divergence along this axis had shifted northward at 27/00 although the central Oklahoma
maximum at 26/18 had moved beyond the coverage of the WPDN. An axis of horizontal
convergence becomes identifiable at 27/00 aligned along the northwesterly jet core (Fig. 6b)
through Colorado and into the Oklahoma Panhandle. A maximum in horizontal convergence
occurs in the jet core over the Red River.

Since the horizontal divergence plays such a key role in determining ageostrophic
motions and vertical velocity, it is instructive to examine the contributions of the individual
components of this quantity. Using a natural coordinate system oriented with the wind flow,
the horizontal divergence can be written

oU_,, U

Dw=¥‘Uan+R,' 9]

Where U is the horizontal wind speed, s is directed along the observed airflow, = is directed
to the right of the motion, B is the wind direction and R, is the radius of trajectory curvature.
The first term on the right of Eqn. 1 accounts for the divergence of air parcels along the
direction of motion, the second term quantifies the difluence of streamlines and the third term
is due to advection of trajectory curvature by the mean wind. Following Cammas and
Ramond (1989), the along- and cross-stream gradients are calculated, where:
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The curvature advection term in Eqn. 1 is determined as a residual by differencing the
Cartesian coordinate representation of the horizontal divergence and the sum of the speed
divergence and directional difluence terms. For the case considered here, the contribution to
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the horizontal divergence by the curvature advection remained at least a factor of five smaller
than the sum of the first two terms on the right of Eqn. 1.

The contribution of the natural coordinate components of the horizontal divergence at
10 km is shown in Fig. 8. A large degree of cancellation can be seen between the speed and
directional difluence terms. The directional difluence, however, did tend to be slightly more
positive (Fig. 8b) than the speed difluence was negative (Fig. 8a) in central and eastern
Oklahoma at 26/18. Not unexpectedly, the speed difluence was negative or convergent in the
exit region of the strong jet while directional difluence was positive ahead of the speed
gradient. The cancellation vanished, however, ahead of the speed gradient in eastern
Oklahoma at 26/18 where the speed difluence was weakly positive while the directional
difluence in the trough resulted in positive values of the total horizontal divergence. The
contribution due to curvature advection was positive in the region of cyclonic turning (Fig.
8c) although the magnitudes tended to be much smaller. Interestingly, the axis of the
divergent contribution due to curvature advection is displaced west of the trough axis. This
displacement is due to the lower relative wind speeds in the trough axis. While the
maximum cyclonic curvature was in eastern Oklahoma (roughly parallel to the 1x10-65-1
isopleth in Fig. 8c), the wind speeds and curvature correlated most positively approximately
200 km west of the trough axis.

The changes in the natural coordinate contributions to the horizontal divergence
between 26/18 and 27/00 are consistent with the eastward propagation of the wind field.
Since the exit region of the jet is more squarely within the profiler array at 27/00, the
resolution of the divergence components is more certain. Directional difluence tends to
remain dominant in eastern Oklahoma while a region of directional confluence is resolved
extending from western Oklahoma into northeastern Colorado. The axis of speed confluence
now extends northward from south-central Oklahoma and curves northeastward along the
wind speed gradient west of the trough axis. While the trough remains evident in
southwestern Missouri and northwestern Arkansas in the curvature term, the primary
contribution over the analysis region is convergent owing to anticyclonic curvature in the
wind speed gradient.

The ageostrophic winds were estimated using the horizontal momentum equations
after Zamora et al. (1987):
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where u; and v, are the eastward and northward components of the ageostrophic wind,
respectively and w is the vertical motion calculated using the kinematic method described in
Appendix B. Time derivatives were estimated using centered differencing. Uncertainties in
the kinematic vertical velocity are discussed in appendix B; however, we assume an overall
uncertainty of 2 cm s~ in this term. The ageostrophic components will be most influenced
by this uncertainty in regions of strong vertical shear where the horizontal gradient of » and v
are small (e.4., below the level of maximum wind along the jet axis). If we assume a vertical
shear of 10 m s-! km-! in a horizontal wind component and an uncertainty of 2 cm s-1 in the
vertical velocity, this translates to an uncertainty in the ageostrophic wind speed of about 2 m
s-1,

In order to further delineate between the components of the ageostrophic wind in the
along- and cross-stream directions, consider the natural coordinate components of the
ageostrophic wind in a frictionless atmosphere (Cammas and Ramond, 1989),

VM =+l£
[ dr

2

v o LU
/R

where 9, and ¥, are the cross and along-stream components of the ageostrophic wind,
respectively. It can be seen that the cross-stream ageostrophic wind is due primarily to
along-stream accelerations of air parcels while ageostrophic motions along the airstream arise
from centripetal accelerations on curved trajectories.

The ageostrophic winds and their associated natural coordinate components at 10 km
are shown in Fig. 9. The influence of the trough and the jet exit region are the dominant
factors at this level. While 9/, nearly vanishes near the trough axis in eastern Oklahoma and
Kansas, the influence of the jet exit region is evident (to a greater extent at 27/00) with
ageostrophic flow to the right of the wind indicative of the deceleration of air parcels as they
pass from the jet core into regions of weaker pressure gradient. This pattern of 9, also
suggests a transverse ageostrophic circulation that is thermally indirect in the jet exit. This
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will be considered in more detail below. While the transverse ageostrophic flow is negligible
near the trough axis, the observed winds are subgeostrophic here, as expected, at 26/18 and
27/00. This can be seen by examining the ¥ field. At 26/18, the trough axis (Fig. 6a) is
not clearly identifiable in the ¥, field, although the region of negative ¥/ in Oklahoma and
Kansas correlates well with the rather broad region of cyclonic turning seen in the wind field.
By 27/00, subgeostrophic flow is concentrated along the trough axis delineated by the region
of negative ¥, in eastern Oklahoma and Kansas and western Missouri and Arkansas. The
alignment of the subgeostrophic flow regime along the trough axis and the apparent increase
in magnitude of negative ¥ support the hypothesis that the flow was amplifying during this
period. Also at 27/00, large positive values of ¥/, are resolved over much of the western
portion of the analysis region. Positive values of %/, indicate that air parcels in this region
are following anticyclonic trajectories. This hypothesis can be examined by considering the
curvature contribution to the relative vorticity at 27/00. Shown in Fig. 10, these values were
calculated as a residual by differencing the shear vorticity and total Cartesian representation
of the relative vorticity. The streamline curvature in the western portions of the analysis
region was clearly negative. When anticyclonic streamlines move eastward at phase speeds
slower than the wind speed, the resulting radii of trajectory curvature tend to be less negative
than the streamline curvature since parcels are moving through the advancing streamline
pattern (Holton, 1979). While the eastward progression of the anticyclonically curved exit
region would have resulted in less negative values of the trajectory curvature, the relatively
slow phase speed of the pattern relative to the airflow would still lead to a negative trajectory
curvature and positive along-stream ageostrophic flow in this region.

The diagnostic framework provided by the natural coordinate representation of the
ageostrophic winds aids in an understanding of the pattern of upper tropospheric divergence
shown in Fig. 7. Consider the ageostrophic wind vectors and speeds at 27/00 (Fig. 9d). An
axis of horizontal convergence is suggested extending from south-central Kansas to north-
central Texas. This feature is also evident at 26/21 (not shown) where it extended in a north-
south direction from western Kansas through the Texas panhandle. Since the geostrophic
winds are approximately non-divergent, the horizontal divergence is closely coupled to the
ageostrophic wind. It is not surprising, then, to find a close correspondence between the
convergence resolved from the total wind field and the axis of convergence in the
ageostrophic winds in this region. The convergence in western Oklahoma was induced by a
superposition of the ageostrophic flow near the trough east of the convergence axis, the
transverse ageostrophic flow associated with the jet exit and the ageostrophic wind induced
by the anticyclonic parcel trajectories in the western portion of the analysis region.
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The transverse ageostrophic flow and horizontal divergence pattern at 10 km suggest
a thermally indirect circulation across the jet exit region. The vertical cross section of the
horizontal wind at 26/21 through the analysis domain is shown in Fig. 11a. The jet streak is
evident in the southern half of the cross section with a strong vertical shear between 7 and 10
km. The cross-stream ageostrophic winds (Fig. 11b), as expected, reach maximum
magnitudes in excess of 30 m s-1 in the jet portion of the cross section and become positive
(to the left of the flow) in the middle and lower troposphere. The vertical motions in the
plane of the cross section (Fig. 11c) show ascent, maximizing in the middle troposphere at
just over 3 cm s°1, across the northern half of the cross section under the upper divergence
discussed above. Descent is diagnosed further south under the elevated convergence region.
Combining these two terms into a vector quantity yield a qualitative image of the transverse
ageostrophic circulation (Fig. 11d). Overlaid on the potential temperature pattern, we find
ascent in the relatively colder air north of the jet axis while the warmer air beneath the jet
core is descending. In other words, we diagnose a thermally indirect transverse circulation
centered near 5 km. The horizontal gradient of the vertical motion is clearly frontogenetical
with vertical gradients in potential temperature being tilted into the horizontal plane.

An interesting characteristic of the transverse ageostrophic circulation diagnosed late
on 26 November is the placement of the circulation to the cyclonic side of the jet axis. While
a thermally indirect transverse circulation is expected in the exit region of a jet streak
(Keyser and Shapiro, 1986), the circulation cell would tend to be centered on the jet axis in
the absence of thermal advection. The orientation diagnosed here places subsident vertical
motions beneath the advancing jet core. Unfortunately, the anticyclonic shear side of the jet
was not sampled by the profiler array during this time. We are, therefore, unable to
determine what the characteristics of the vertical motions were to the right of the jet axis.
However, by building on the previous discussion of the kinematic characteristics of the upper
troposphere, understanding the orientation of the ageostrophic circulation in the left exit
region is straightforward. The displacement of the indirect circulation resulted from the
Juxtaposition of the diffluent trough axis in the northeast of the analysis domain, the jet exit
region and the anticyclonic curvature in the west. The upper tropospheric divergence in the
region of directional difluence and small but positive curvature divergence coupled with
lower tropospheric convergence associated with the weak front and developing low pressure
forced the ascending branch of the circulation. While the influence of streamline curvature
on the horizontal divergence was small in the northeast areas, the westerly ageostrophic
motions that resulted from the positive curvature (Fig. 9) contributed to the development of
upper tropospheric convergence west of the trough axis (Fig. 7). This convergence was
strengthened by a confluence of the northeasterly ageostrophic flow in the jet exit region
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(caused by along-stream parcel decelerations, Fig. 9) and the positive along-stream
ageostrophic flow associated with anticyclonic trajectories (Fig. 10) beneath the jet core.
This resulted in strong upper tropospheric convergence over western Oklahoma and Kansas
forcing the diagnosed descent in this region.

An alternate interpretation of the forcing of the ageostrophic circulation can be
obtained by considering the geostrophic forcing of the Sawyer-Eliassen equation. Provided
that the potential vorticity is everywhere positive, this equation is a second order elliptic
partial differential equation that diagnoses an ageostrophic streamfunction required to
maintain thermal wind balance in straight jet-front systems (Keyser and Shapiro, 1986).
Symbolically and qualitatively we can write,

L Vg 00 U 36 Q,+Q,

3y By av ax
where @ is the circulation streamfunction, g and vy are the geostrophic components in the
along front (parallel to x) and cross front (parallel to y) directions and x and y are oriented
'along and across the upper level jet-front system respectively. @Q is the geostrophic
stretching deformation and quantifies the effect of geostrophic confluence forcing scale
contractions on the frontal temperature gradient. Q accounts for horizontal geostrophic
shear rotating along front thermal gradients into the cross front direction. A schematic
representation is shown in Fig. 12. While there are inherent difficulties in a quantitative
application of this equation to data (Cammas and Ramond, 1989), without excessive flow
curvature, the diagnosed vertical circulation should agree qualitatively with the geostrophic
forcing.

The Sawyer-Eliassen forcing, Q1 and Q, in the plane of the cross section of Fig. 11
are displayed in Fig. 13. The total geostrophic forcing of the transverse circulation is
negative and would, therefore, tend to force a thermally indirect circulation. The total
forcing reaches a maximum near 9.0 km over central Oklahoma. The location of the
maximum forcing coincides with the diagnosed center of circulation (Fig. 11c) although the
forcing maximum is displaced several km above the circulation center. By examining the
components of the geostrophic forcing, we find that the geostrophic confluence, Qy, is the

dominant term. The dominance is due, in large part, to very small magnitudes of du, /= in
the cross section. While considerable warm air advection is diagnosed (strongest warm air
advection is found near the diffluent trough), the small cross-stream shear in ty would have
little effect in rotating the thermal gradient into the cross-stream direction. As expected from
thermal wind arguments, the cross-stream thermal gradients are maximized just below the jet
core in the extreme southwestern portion of the cross section. However, due to a decrease in
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the magnitude of the horizontal confluence in the geostrophic wind in this region Qj reaches
maximum magnitudes northeast of the jet core on the cyclonic side.

The important point here is that the kinematically-derived ageostrophic circulation
agrees qualitatively with the total geostrophic forcing. We have found that this forcing is
generated predominantly by a frontogenetical amplification of the cross-stream temperature
gradients by the geostrophic wind. Recall Fig. 11d that shows the vertical gradient of
potential temperature being tilted into the horizontal plane by the thermally indirect vertical

circulation.
3¢ The Cloud Event of November 26: Regional and Local Description

The analysis of the objectively analyzed radiosonde and wind profiler data has
enabled us to infer the dynamical characteristics of the large scale flow during this period.
However, our primary goal is to understand how the cloud fields (cirrus, in particular)
evolved in concert with the dynamics. Indeed, it is this connection between the large-scale
characteristics and the macroscopic properties of the resulting clouds that will ultimately be
combined with the observed microphysical and radiative characteristics to yield improved
parameterizations of cloud occurrence and optical properties in GCMs.

Consider again the GOES satellite imagery (Fig. 5) of the cloud band as it progressed
over central and eastern Kansas and Oklahoma from 26/18-27/00. At 26/18, the cloud
system appeared as a linear feature oriented approximately south to north from central Texas
through Oklahoma and into eastern Kansas where the system broadened into a fairly
extensive cloud system centered on Iowa. In north Texas, the band appears to be composed
primarily of middle-level clouds while the clouds become progressively brighter and more
cirriform in nature from central Oklahoma, northward. The horizontal width of the band
increases from approximately 100 km in central Oklahoma to more than 250 km in northeast
Kansas. It is important to note here that this particular cirrus system cannot be classified as a
typical jet-stream cirrus event where cirrus is often observed to be elongated parallel to the
wind flow. The upper tropospheric flow here is generally perpendicular to the orientation of
the cloud field and the system propagates roughly at the phase speed of the dynamical
pattern. East of the cloud band in Texas, Oklahoma and Arkansas, low and middle-level
clouds with some cirrus was associated with a developing southerly flow from the Gulf of
Mexico. Skies cleared considerably in western Kansas and the panhandle region of
Oklahoma and Texas. .

The high cloud optical depths calculated using visible GOES 7 data and the technique
of Minnis et al. (1993) are shown in Fig. 14. Optically thin cirrus is diagnosed along much
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of the band through central Oklahoma. Optical depths increase substantially in southern
Kansas. It is noteworthy that a simple examination of the IR imagery does not suggest a
large change in the character of the cloud band in south-central Kansas. While some
variability in the brightness is evident, no large changes occur in the IR from central
Oklahoma into northern Kansas. However, at visible wavelengths, the southwest-northeast
oriented spur of cirrus in south-central Kansas identifiable in the infrared imagery represents
the southern extent of the optically thickest cloud line. We speculate that these
characteristics are evidence of the well-known property of thin cirrus that the infrared
emissivity approaches unity more rapidly than the visible reflectivity (Ackerman et al.,
1988).

By 26/21, the entire cloud structure had progressed eastward. The leading edge of the
main cloud band in the infrared imagery is identified in eastern Texas and Oklahoma.
Evaluation of the satellite-derived visible optical depths are not possible at 26/21 due to
increasing solar zenith angles. Farther north in northeastern Oklahoma and southeast Kansas,
a series of three southwest-northeast oriented cloud lines are identified. Animation of the
imagery suggests that these lines were becoming increasingly brighter with time, indicating
active cirrus generation, and propagating southeastward toward the leading edge of the
primary cloud system. Apparently, cloud generation was occurring in a wave-like pattern
oriented nearly parallel to the weak southwesterly flow aloft. The southwestern portion of
these active generation regions tended to be advected faster toward the east by the advancing
jet streak (Fig. 6) than the northeastern segments. This resulted in the north-south orientation
of the cloud line in the infrared imagery. This is particularly evident between 26/21 and
27/00. Fig. 15 shows the brightest band as it passed through southeast Kansas between 26/21
and 27/00. The initial southwest-northeast orientation at 26/21 gradually became more
north-south as the southern portions were more rapidly advected eastward relative to the
northern parts.

By 27/00, the leading edge of the main cloud band had passed eastward into Arkansas
and Missouri. The trailing portions of the band are identified over southeastern Kansas and
eastern Oklahoma. The region of clear skies had also progressed eastward into central
Oklahoma and Kansas while cirrus can be identified in the northwesterly flow over Colorado,
western Kansas and Oklahoma in association with the ridge-crest cirrus system identified
earlier.

The broad characteristics of the cloud field that passed over Kansas and Oklahoma
are strongly coupled to the synoptic-scale dynamics discussed above. During its passage
through the analysis region, the cloud band existed between the wind speed gradient
associated with the advancing jet streak and the diffluent trough axis to the east. The cloud
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band propagated eastward with these dynamical structures and maintained its overall
orientation with them throughout the period. This correspondence can be understood by
considering the horizontal divergence in the upper troposphere (Fig. 7). At 26/18, the cloud
band can be seen to extend along the axis of horizontal divergence through central Oklahoma
and Kansas. The placement of the horizontal divergence west of the trough axis and east of
the speed gradient was discussed earlier. The coupling between the cloud and upper
tropospheric divergence remained strong at 27/00 (Fig 6b) where the axis of horizontal
divergence existed along the Kansas-Oklahoma border. At this time, the maximum
divergence had shifted north into eastern Kansas. Satellite imagery suggests the brightest
clouds at 27/00 were north of the Kansas-Oklahoma border with dissipating cloud cover over
eastern Oklahoma where upper tropospheric divergence had decreased.

Of course, any correspondence of the cloud features with the horizontal divergence
pattern in the upper troposphere follows directly from the vertical motions implied by mass
continuity. Fig. 16 shows a time sequence of kinematic vertical velocity cross sections that
transect the cloud band along the Kansas-Oklahoma border. As expected, large scale ascent
is diagnosed in the middle and upper troposphere during this period. Broad gentle descent is
also resolved in the lower stratosphere (the tropopause during this period was near 10.5 km).
At 26/18, ascent is diagnosed between 2 and 8.5 km along the entire cross section with
maximum vertical velocities of just over 3 cm s-1 occurring along 97.5° W - the approximate
location of the cloud band identified in Fig. 5a. Values greater than 2 cm s-1 are estimated to
extend to 7.5 km at this time. By 26/21, the vertical motion pattern along the cross section
had shifted eastward and intensified significantly. Maximum ascent is still resolved near 4.5
km with peak values greater than 5 cm s-1 along 95-96° W. Positive vertical motions are
also resolved to a higher elevation at 26/21 with values greater than 2 cm s-1 occurring to 8
km and positive vertical motions suggested to 11 km. Recall that during this period, active
cirrus cloud formation was occurring in bands near the Kansas-Oklahoma border. These
bands were propagating southeastward towards the leading edge of the main cloud formation.
The cross section of vertical motions along the central portion of the main cloud shield at
26/21 is shown in Fig. 17. As before, peak upward motions are resolved in the middle
troposphere near 37 N just south of the Kansas-Oklahoma border. The upper troposphere
near this latitude is ascending while upper tropospheric subsidence is diagnosed north and
south of the cirrus generation area. Also, as suggested by imagery, the vertical motions
throughout the troposphere decrease markedly in central and southern Oklahoma. By 27/00
(Fig. 16c¢), the region of maximum ascent had shifted eastward into southwest Missouri and
subsidence is resolved west of 98° W in all but a thin tropospheric layer between 9 and 12
km. The positive vertical motions are consistent with cirrus advancing into the western
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portion of the area in association with the approaching large-scale ridge-crest cloud system.
The trailing edge of the cloud band under consideration now existed over extreme eastern
Kansas and Oklahoma.

Fortuitously, the Hub of the FIRE CIRRUS-II project at Coffeyville, Kansas (Fig. 1)
was located very near the maximum large scale vertical motions and most intense cirrus
generating region. This allowed extensive sampling of the characteristics of the clouds
forced by the vertical motions described above. Fig. 18 shows a time-series of the data
collected by The Pennsylvania State University 94 GHz cloud radar (Clothiaux et al., 1994)
on the afternoon of 26 Nov. The leading edge of the cloud shield was first observed over
Coffeyville at about 9 km. The layer of cirrus rapidly thickened after 1900 UTC, resulting in
a cloud layer with a base at about 6.5 km and top ranging from 8.8 to 9.5 km. Aircraft
reports indicate very thin cirrus extended up to about 10.5 km. The radar profile shows
regions of enhanced power after 1915 UTC indicative of convective cells within the main
cloud layer. Three organized precipitation streamers that penetrated below 6 km occurred
between 1945 and 2115 as cloud base gradually lowered (Fig. 18). After 2115, a definite
change in the character of the cloud was noted as cloud base lowered quite rapidly and
returned power increased. By 2200 UTC cloud base was observed near 3 kilometers. (Note
that the radar minimum range was set at 3 km during this period, which precluded
measurements below this height; cloud base did drop below 3 km as evidenced by ceilometer
measurements.) Cloud top during this time was observed to decrease slightly to 8 km. The
next major change in the cloud deck occurred after 2215 UTC. Cloud top and the upper
extent of the region of enhanced reflectivity became more diffuse and cloud top began to
decrease rapidly while the lower portions remained nearly unchanged. By 2330 UTC only
scattered clouds were observed by the radar.

The local evolution of the vertical thermodynamic and moisture structure is of
considerable importance when attempting to understand the coupling between the diagnosed
dynamics and the observed local and regional cloud fields. We will consider the CLASS
radiosonde soundings (see Fig. 1) recorded at Coffeyville, Iola (IOL), Arkansas City (ARK)
and Muskogee (MUS) at 26/12, 26/15, 26/18, 26/21 and 27/00. Relative to Coffeyville,
ARK is about 140 km to the west, IOL about 100 km to the north and MUS about 160 km to
the south. Also recall that the actual release times of the soundings are 30-45 minutes prior
to the nominal sounding time and that the sondes reached 8 km about 25 minutes after
launch. The time series of soundings for Coffeyville are shown in Fig. 19 where each
successive sounding is offset by 10 °C. Fig. 20 shows time-height cross sections of relative
humidity and plotted in Fig. 21 are time series of potential temperature profiles.
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The tropopause at Coffeyville was located at about 10.5 km (245 mb at -59.5 °C) at
26/15 and slightly lower at 26/18 and 26/21 (Fig. 19). A much lower tropopause (9.4 km at
290 mb and -51.1 °C) was observed at 27/00 although the region between 9.8 and 10.7 does
have a tropospheric lapse rate at this time with relative humidity (ice) greater than 60%.
Recall that this last sounding passed through the most vertically developed portion of the
cirrus cloud band. Complex upper tropospheric stability structure (multiple tropopause) is
common in soundings taken in the vicinity of jet cores (eg., Starr and Wylie, 1990). The
ARK soundings show a similar pattern with continued tropopause lowering and complex
structure after the cloud band had passed while IOL and MUS show less dramatic changes
(Fig. 21). The general tendency is consistent with the diagnosed weakly subsident vertical
motions in the lower stratosphere (Fig. 16). 7

The soundings generally exhibit a remarkable degree of thermal structure with a
number of persistent and highly stable features (Fig. 21). Each location has a strong
inversion at about the 2 km level that does not appear to change with time. Each also shows
a second inversion that initially occurred at about the 3 km level (26/12) but then
subsequently lifted (especially after 26/18) before becoming fairly diffuse by 27/00 at
Coffeyville and IOL where intense moistening and cloud development occurred below the 6
km level. By 27/00, this feature was located just below the 5 km level at ARK. Another less
distinct but persistent stable feature was also initially observed just above the 6 km level at
each site. This stable zone tended to lift weakly until 26/21 at Coffeyville and IOL followed
by a dramatic rise. This feature has good correspondence with cloud base between 26/19 and
26/21 at Coffeyville and caps the region of very dry air below the region of initial cloud
formation (Fig. 20). The observed vertical displacements of the mid-tropospheric stable
features (and isentropes) is in very good agreement with the diagnosed pattern of vertical
motion both temporally and spatially.

Warm air advection was observed at Coffeyville throughout the upper troposphere
above 7 km in association with the progressive humidification of the region. However,
strong cooling was observed between 26/21 and 27/00 (Fig. 21). Similar tendencies were
observed at the other sites although differences are seen in the lower extent of the region of
warm advection and in the timing of the changeover to cold advection. It is likely that the
changeover from warm tocold advection roughly coincided with the dissipation of the upper
portion of the cirrus band observed after 2245 at Coffeyville (Fig. 18) though this cannot be
definitively established with the available data. The passage of the bright southwest-
northeast cirrus band at IOL (Fig. 5b) also corresponds fairly well with the changeover there.

The thermal structure associated with this event showed a good deal of variability and
complex development. The evolution of the moisture field as observed by the CLASS
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radiosondes also exhibits quite interesting evolution. The 26/15 and 26/18 soundings from
Coffeyville (Fig. 19) show a layer of enhanced moisture (60% or greater) at an altitude of 7
km with very dry air above and below this layer (Fig. 20). The 26/18 sounding was made in
the cloud-free dry slot just ahead of the cloud band (Fig. 15). By 26/21, relative humidity
exceeded 80% in layers located at 7 and 8.8 km. The latter corresponds fairly well to the
location of cirrus cloud top while the former corresponds to the layer where cloud
development was observed after 26/19 (Fig. 18). Later at 27/00, relative humidity exceeded
100 % in the lower layer that had merged with the upper moist layer. Very strong
moistening had occurred between 3 and 6 km in agreement with the radar cloud observations
at 26/23 and the calculated vertical motion forcing (Fig. 14). Enhanced humidity is found up
to nearly 11 km. This sounding passed through the cloud system at its most vertically
developed stage (Fig. 18).

Soundings made to the north at IOL show similar moisture structure (Fig. 20)
although the humidification above the 8 km level was observed earlier (26/15). This is
consistent with the satellite imagery that indicates a much broader region of cirrus cloud
development to the north of Coffeyville. The relative humidity patterns at Coffeyville and
IOL are remarkably similar at lower levels. The evolution of the moisture field to the west at
ARK shows a less intense pattern of moistening. The final 27/00 sounding at ARK was
made in the clear region following the cloud band (Fig. 5¢) and indicates substantial drying
of the upper troposphere. Besides resolving the main cirrus deck between 6 and 9 km, the
26/21 ARK sounding also gives some 1ndlcat10n of another layer of possible cloud formation
near the 10 km level that is consistent wit rvations from one of the research aircraft (M.
Poellot, personal communication). It also appezifs that the downward extension of the cloud
layer that was observed at Coffeyville after 26/2145 (Fig. 18) had probably not developed by
the time the cloud band passed ARK. Soundings made to the south of MUS (Fig. 20) show
elevated moist layers at higher altitudes (8 and 9.5 km) that were somewhat more distinct
(e.g., at 26/21). As at ARK, the intense moistening below the 6 km level was not observed at
MUS.

From our earlier discussions, it is quite apparent that rather intense large scale ascent
existed over southeastern Kansas and northeastern Oklahoma as the synoptic scale dynamics
evolved during the afternoon 26 Nov. Evidence for this ascent was also noted in the
radiosonde time series discussed above. A time-height cross section of kinematically-derived
vertical motions using WPDN data and interpolated to Coffeyville is shown in Fig. 22. As
expected, ascent is diagnosed below 8 km throughout the period and vertical motions near

zero are diagnosed at and above the tropopause. Peak ascent remains in the layer between 3
and 4 km. The vertical velocity in the cirrus generating region between 6 and 8 km and
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26/19 and 26/21 is between 2 and 4 cm s-1. At 26/22, when cloud base decreased to less
than 3 km, maximum vertical velocities were near 7 cm s-1 at 3.5 km. After 26/23, the uplift
decreases substantially throughout the troposphere, in reasonable correspondence with the
change from warm to cold advection. This decrease in the vertical forcing also correlates
well with the passage of the trailing edge of the main cloud band to the east of Coffeyville
depicted on satellite imagery and in the radar time series.

Thus, the layer of initial cloud formation (7 to 9 km, Fig. 18) was a region of warm
advection and progressive moistening in association with upward vertical motions. This
region was bounded below by a stable frontal-like feature that progressively lifted. Two pre-
existing sublayers of enhanced moisture appear to have resulted in initial cloud generation at
the 9 km level and then subsequent cloud generation at about the 7 km level in response to
the continued forcing as well as possibly the moistening due to evaporation of ice crystals
sedimenting from the higher layer. These two layers quickly merged. At 26/18 just prior to
cloud formation, the thermal stratification in the layer from about 7 to 8 km was
approximately neutral with respect to ice pseudoadiabatic processes with distinct sublayers
exhibiting conditional instability. By 26/21, this region of weak instability was located about
0.5 km higher in correspondence with the lifting of the bounding stable layer below. This
corresponds well with the radar observations of cellular, i.e., convective, development in the
cloud layer and the initial visual observations of cirrus generating cells. Layers of
conditional instability were also observed at higher levels at 26/18; however, the general
tendency was for progressive stabilization there, especially after 26/21.

The subsequent, rapid, downward growth of the cloud layer after 26/2130 at
Coffeyville was associated with a very rapid moistening of the layer between 3 km and the
base of the existing cirrus clouds. This moistening likely resulted from quasi-horizontal
advection but was also forced by the adiabatic cooling arising from the peak in upward
motion in this layer and evaporation of falling ice crystals. The region between the two
stable zones, approximately from 4 to 6 km at 26/18, was quite conditionalfy unstable. The
stability structure became highly variable by 26/21 but still with evidence of good convective
potential. Even at 27/00, strong conditional instability was still observed between 3 and 4.5
km. The progressive lowering of the zone of conditional instability is consistent with the
interpretation offered by Starr and Wylie (1990) based on the numerical simulations by Starr
and Cox (1985a and 1985b) where evaporation of falling ice crystals leads to downward
propagation of convective cloud generating layer through the combined effects of
evaporative moistening and the destabilizing pattern of corresponding evaporative cooling.
In the present case, we speculate that penetrative downdrafts could have developed in
association with precipitation streamers falling into this conditionally unstable layer as
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relative humidity approached ice saturation and led to the rapid downward growth seen in
Fig. 18.

4. Cirrus Parameterization

The analyses presented in the preceding section have provided a time series of
vertical velocity and relative humidity averaged over spatial scales of several hundred
kilometers and centered on the FIRE Cirrus II operational hub at Coffeyville. We believe
that these fields provide an accurate description of the synoptic scale conditions at
Coffeyville, unfiltered by any model assimilation. As such, these fields represent a purely
data-based analogue to the fields generated by GCMs. The two primary differences are that
these data fields represent a directly observable atmospheric state (as opposed to GCM fields,
which represent some particular realization of the model climatology) and their time
resolution is somewhat coarser than that of a GCM. Given that these fields are analogous to
GCM fields, they can be used to drive a cloud parameterization just as the parameterizations
are driven in an actual model (TIacobellis and Sommerville, 1991). Because observations of
cloud properties were made during this period at the Coffeyville site, we have the unique
opportunity to validate the clouds generated by the parameterization scheme. As an added
benefit, our ability to simulate well the observed clouds can be used as a partial validation of
the derived cloud fields.

To test this approach, we have used the HD parameterization (see Section 1 for a brief
description) forced by the vertical velocity field shown in Fig. 22 and the relative humidity
with respect to ice observed by CLASS radiosondes at Coffeyville (Fig. 20). Vertical
velocities were computed at the top of each hour and are nominally valid during the 30
minutes before and after that hour. The humidities, however, were recorded only at 26/18,
26/21 and 27/00 and were, therefore, linearly interpolated to the hours where no observations
were available. The resulting bulk ice water contents are shown in Fig. 23 for the period
26/18 to 27/00. The temporal and vertical variability of this figure should be compared with
the radar reflectivities for the same period (Fig. 18). The simulated cloud is well correlated
with the observations in terms of bulk structure, although some differences are apparent. The
parameterization captured quite well the early development of the cirrus and the subsequent
deepening of the cloud. This latter occurs somewhat earlier in the parameterized cloud than
was actually observed. This may be due to the spatial averaging of the wind field but is more
likely due to the linear interpolation of the water vapor time series.

We have attempted to quantify one aspect of the parameterized cloud by comparing
optical depths retrieved from sun photometer observations and those derived from visible
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satellite data (Minnis, 1993) with the optical depth parameterized from the ice water contents
depicted in Fig. 23. To derive optical depths from the parameterized ice water contents, the
temperature dependent size distribution parameterization reported by Heymsfield and Platt is
used in conjunction with the radiative parameterization of Ebert and Curry (1992). Since the
parameterized cloud properties represent time-averaged quantities, the sun photometer data
of Shiobara and Asano (1994) were averaged to 30 minute values. These data were also
corrected for forward scattering of photons into the solar beam. The satellite optical depths
are computed after the technique of Minnis (1993) and represent spatially averaged (0.5 x 0.5
degree) data ata particular time. Table 1 shows the comparison. The parameterized and
satellite-derived optical depths were temporally interpolated to the nominal valid times of the
sun photometer data. Reasonable agreement is apparent early in the simulation with the three
techniques reporting values less than or equal to two. At 1945 and 2019, the sun photometer
and satellite techniques suggest thickening high clouds while the simulation suggests
thinning. By 2045, however, agreement between the parameterized and sun photometer is
apparent while the satellite-derived value chages little. The satellite-derived optical depth at
2045 is very uncertain due to increasing solar zenith angles. The discrepancies between the
parameterized values and the observed quantities is maximized during the midpoint between
soundings. In other words, agreement is good just after the 26/18 sounding and just before
the 26/21 sounding. This indicates that three-hourly observations of the water vapor profile
are not sufficient in this situation to resolve accurately the evolving moisture field.
Comparisons for the entire period cannot be made because the sun photometer measurements
are inaccurate at large optical thicknesses and low sun angles.

These simulation results are very encouraging from a number of perspectives. As
shown theoretically by Starr and Cox (1985a and 1985b) and observationally by Starr and
Wylie (1990) and Sassen et al. (1989), the large-scale vertical velocity is a crucial component
in the dynamical forcing of tropospheric cloud systems. The quality of this simulation
suggests that our analysis scheme captured the essence of the vertical velocity field during
this time period. Obviously, large-scale thermodynamical fields are also critical. Again, the
good quality of the simulation, including particularly the ice water path comparisons, attests
to the accuracy of our analysis. The fact that the bulk characteristics of the cloud could be
simulated adequately with synoptic-scale fields is encouraging from the point of view of
GCMs, since our fields contain information at comparable scales to GCMs.

This approach also demonstrates a clear path whereby cloud parameterizations can be
improved. By using the observed fields, we have decoupled the parameterization problem
from the model generation of forcing fields. Thus, the simulated clouds rely only on the
accuracy of the analysis and the details of the parameterization, and not on the model
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simulation (or assimilation) of the large-scale fields. While our approach has some
drawbacks, most importantly the lack of availability of the data we require, it permits a
quantifiable, iterative approach to the improvement of cloud parameterizations.

Finally, we should emphasize that this is only a single case. We have compared
results from several other periods during the FIRE Cirrus II campaign, finding varying
degrees of agreement with cloud radar and satellite observations. For the most part,
significant disagreement was caused by a lack of accurate water vapor data in the upper
troposphere. This was due to obvious failure of the humidity sensors at cold temperatures
and to poor temporal resolution of the sonde launches. The analyzed vertical velocities were

questionable in several instances.
5. Summary and Conclusions

Field programs such as FIRE Cirrus II perform a valuable service to the scientific
community by examining in great detail the evolution of cirrus clouds and associated
radiative fields. Such a close examination provides a wealth of information from which
generalizations can be made that ultimately influence the development of parameterizations.
However, it can be state unequivocally that one of the fundamental challenges to any attempt
at improving cloud and radiation parameterizations in GCMs is how to actually couple the
model atmosphere to the physical phenomena that are observed in the real atmosphere. This
is true because, ultimately, it is the temporal and spatial scales of motion resolved by the
model that drive the parameterizations. If the interaction between the scales represented by
the GCM and that of the clouds in not thoroughly built into the parameterizations, increased
knowledge of cloud microphysics and instantaneous radiation transfer through cirrus will not
benefit climate prediction efforts. Examining the connection between the evolving large-
scale meteorology (that which is resolvable by GCMs) and the observed macro-scale cloud
properties has been the primary focus of this paper. We have concentrated on a 12 hour
period from 12 UTC 26 November 1991 to 00 UTC 27 November 1991 during the field
phase of FIRE Cirrus I held in Coffeyville, Kansas. The period we considered has become
one of the focal cloud events of the field program.

We have utilized combined wind profiler and radiosonde data to generate the large-
scale dynamical fields necessary for thorough analysis. Consistent with Thiebaux and Pedder
(1987), Davies-Jones (1993) and Mace (1994), the analysis techniques were designed to
minimize the uncertainty in the objectively analyzed quantities rather than to maximize the
spatial resolution of the analysis product. As such, the analyses resolve synoptic scale
variability and approximate a 2x2 degree grid resolution of a typical GCM. Hourly
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kinematic analysis is possible using the time-space-converted (see Appendix A) WPDN data.
However, thermodynamic analyses are limited by the launch schedule of the radiosonde
network.

A primary result of this study is the obvious coupling that has been demonstrated
between the evolution of the synoptic-scale dynamics and the maintenance of a middle and
upper tropospheric cloud band. Central to our argument is the indirect vertical circulation
associated with the exit region of the strong jet streak that propagated into the western
portions of the analysis region during the afternoon of Nov. 26, 1991. The vertical
circulation was found to be displaced to the cyclonic side of the jet, placing the descending
branch below the jet axis and the ascending branch well to the left of the axis, just upstream
of a small-amplitude, diffluent trough. The displacement of the circulation to the left of the
axis was determined to have been caused by a combination of several factors. These
included the amplifying diffluent trough, and a building ridge in the southwestern United
States. This juxtaposition of evolving dynamical features ensured that the along-stream
ageostrophic flow was evolving with time and could not be neglected as is assumed in the
development of the Sawyer-Eliassen equation. The geostrophic forcing of the circulation
was found to be due primarily to geostrophic confluence. While considerable warm air
advection was diagnosed near the trough axis, small values of the geostrophic shearing
deformation were ineffective in rotating the cross-stream thermal gradient into the along-
stream direction. The forcing of the circulation due to scale contractions associated with
geostrophic confluence was found to maximize just below the level of maximum wind and
several kilometers above the center of the diagnosed vertical circulation.

Embedded within the ascending branch of the indirect circulation was a middle and
upper tropospheric cloud band. The orientation of the cloud band with the dynamical
structures identified above was maintained throughout the period of the case study. Satellite
imagery indicated active cirrus generation in thin bands along the Kansas-Oklahoma border
between 26/20 and 26/23. This region of cloud formation correlated positively in both space
and time with the maximum vertical motions in the ascending branch of the jet-induced
circulation. These cloud features were sampled extensively by the FIRE Cirrus-II field effort
in southeastern Kansas and Northeastern Oklahoma. The cloud band consisted of cirrus
generating cells early in the period (26/19-26/2130) and thickening middle tropospheric
cloud after 26/2145. .

We demonstrated that an effective technique to verify the response of cloud
parameterizatons to GCM-scale dynamics is to decouple the parameterization from the model
and force it with data. The output of the parameterization can then be verified against
observations. Forcing the HD parameterization with kinematically-derived vertical velocities
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(Fig. 22) and radiosonde-observed humidities (Fig. 20), we were able to show good
correspondence between the temporal and vertical variability of the parameterized clouds
(Fig. 23) and that observed by cloud radar (Fig. 18). Additionally, reasonable agreement was
displayed between HD parameterized ice water paths and those retrieved from sun
photometer observations.

The favorable comparison between the observations and paramterized clouds leads to

several conclusions:

1. Cirrus cloudiness formed as part of a baroclinic leaf cloud structure can be
successfully parameterized using a diagnostic cirrus parameterization and large-scale
dynamics. It should be noted that, due to low horizontal wind speeds in the cirrus generation
region, horizontal advection of ice over large distances was likely not a factor. Thus, the
bulk diagnostic scheme performed well.

2. Given the sensitivity of the HD parameterization to the large-scale vertical
velocity, we conclude that the diagnostic analyses generated from the WPDN data were of
high enough quality to capture the essence of the vertical velocity field over Coffeyville.
This also lends credence to the overall dynamical setting derived from the WPDN analysis of
a jet-induced vertical circulation displaced poleward of the jet axis.

3. The technique used to test the HD parameterization is viable assuming adequate
availability of input fields and of suitable verification data. The technique requires hourly
wind profiler data from at least seven stations spread in an array about a central location.
Thermal and moisture fields with at least three hourly resolution are essential but may not be
sufficient in certain situations. Hourly values derived from RASS and Raman lidar would be
ideal and are necessary in certain situations. At this point the only verification of the
parameterized cloud properities is through remote “sensing measurements of internal
structure.  Since aircraft-based verification of these techniques may not be possible
(Vogleman and Ackerman, This Issue), greater emphasis needs to be placed on accurate
cloud property retrievals from remotely sensed data. Finally, it is quite obvious that a single
case study is not sufficient. For this technique to be truly effective, examination of numerous
events over a significant time period (1-2 years) needs to be carried out.

While short term intensive field campaigns like FIRE Cirrus II are absolutely
essential for collecting in-situ and remotely sensed cloud data for process studies and model
development, the points made above show the weakness of campaigns in parameterization
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testing and verification from data. The Department of Energy's (DOE) Atmospheric
Radiation Measurement (ARM) program (Sokes and Schwartz, 1994) is specifically designed
to address point 3 above. ARM has established a long-term observational facility known as
the Southern Great Plains (SGP) Clouds and Radiation Testbed (CART) site withing the
inner array of the WPDN (Fig. 1). This facility will provide the verification data needed for
parameterization development and testing. The ARM programs is, essentially, built around
the concept known as single column modeling (SCM) where all physical parameterizations
are forced by observed dynamical fields. The discussion we presented built around the HD
parameterization is a first step in the SCM concept. If properly implemented over a
significant period of time, improvements in GCM parameterizations will follow. However,
the success of the SCM concept applied to the SGP CART site depends primarily on the
quality of the input data. A primary component of the input data is observations from the
inner array of the WPDN. No other observational platform can generate the temporal,
vertical and spatial consistency needed in the SCM concept. It can be stated with reasonable
certainty that without a high quality data stream from the inner array of the WPDN, the data-
based SCM approach originally envisioned by ARM will not succeed.

Our future work is directed at more quantitative verification of cirrus cloud
parameterizations. Using the size distributions described by Heymsfield and Platt (1984) and
the radiative parameterization of Ebert and Curry (1991), we are perfoming full radiative
calculations based on the HD parameterization derived from the entire FIRE Cirrus II dataset.
These results are being verified with surface-based observations and satellite-derived
properties. These techniques, derived from the FIRE Cirrus-II period, are being ported to
operationally process the ARM SGP data stream. Current plans are to implement a full data-
based single column model (Iacobellis and Sommerville, 1991) and to apply this model to
long time series of data.
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Appendix A
Time-Space Conversion Technique

In the past, the temporal resolution of observed tropospheric wind profiles was
limited to the time required for a radiosonde to make an ascent from the surface to the
tropopause. The finest temporal resolution possible tended to be about 2-3 hours. Also, due
to the cost of operating temporally enhanced radiosonde networks, this resolution was only
possible for short durations. A distinct advantage of wind profiler observations is the
temporal continuity of the vertical profiles. To take advantage of the temporal continuity, an
algorithm has been developed that converts the observed temporal characteristics of the wind
into a spatial distribution of independent observations.

To preserve the integrity of the data, the time-space conversion (TSC) technique
described here is limited in scope and is applied during a three hour period only when certain
conditions are met. The period that is considered for the conversion extends from 1 hour
before (denoted ¢.1) to one hour after (¢41) a current (#) observation. All three observations
in time at a particular level must be present. The assumption is made that the winds along a
curved trajectory streamline are subject only to the centripetal acceleration necessary to
maintain the air parcels on the streamline. Additionally it is assumed that the wind speeds
vary linearly along the trajectory. With these assumptions, the approximation can be made

that ¥ = ‘V,:” and V) = ‘Vj:’ where the superscripts refer to the time and the subscripts refer
to a distance upstream (s,), downstream (s and at the profiler location (sp). Therefore, the

distances, s, and syare increments of arc appropriate for the location of the winds ’V,:' ! and

V', respectively. These distances are estimated using forward and backward finite

]

differencing to be,

t t+1
su=-At(q} Mt )
2
,Voo ,.Vr—l
s,=At( % )

The endpoints of the streamline trajectories must be located in space. The schematic in Fig.
Al shows the geometry that is considered. It is assumed that the streamline defined by the
three observations has a single radius of curvature. R, is estimated by fist mapping the
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WPDN observations at time, #), to a Cartesian grid and then estimating the radius of
streamline curvature, ®,, by incrementally stepping forward and backward along an arc of
100 km that is defined by the spatial distribution of wind observations. After determining R,
R, can be estimated using the equation (Holton, 1993),

1_1, 108

R R Ve ot
where B is the observed wind direction at the profiler site and dB/dt is estimated using
centered differencing. Since the uncertainty in %, increases with increasing curvature, the
TSC algorithm does not continue if R, is found to be less than 1000 km. The center of
rotation of the parcel trajectory is then determined by noting that ®, is normal and to the
wind direction and to the left (right) of the flow for positive (negative) R, Therefore,

x = %, - &, cos(p)
Y, = y,~ Rsin(B)
where x and y, are the coordinate locations of the center of curvature and x; and yj, are the
coordinates of the profiler. The upstream and downstream locations are then estimated by

noting that,

a, =—*
R

_ 54
a,(———
R,

where o, and ot are the angles subtended by the upstream and downstream locations with

the radius of trajectory curvature. Therefore,

%, = x + R cos(a, +B)
y. =y +Rsin(a, +B)
% =x +Rcos(B-a,)
Y=y +Rsin(B-o,)

are the upstream and downstream locations assigned to the winds observed by the profiler at

times ;1 and ¢.1 respectively.
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Appendix B
Kinematic Vertical Velocities from Wind Profiler Data

The profile of vertical velocity can be determined by solving the continuity
equation (Holton, 1993),

op ~ d
3?+(V"p"")= -5 (pw) (B1)

assuming the vertical profile of horizontal divergence is known to good accuracy and
appropriate boundary conditions are specified. In most previous applications of the
kinematic method, pressure was used as the vertical coordinate since the winds necessary
to determine the horizontal divergence were acquired from radiosonde data. An
exception to this is the work of Carlson and Forbes, 1988, and Hermes, 1991. Since
wind profilers measure the wind in physical height coordinates, no supplemental
thermodynamic information is generally available that allows unambiguous mapping of
the measured horizontal winds onto pressure surfaces. Therefore, in order to make the
application of the kinematic method as general as possible, the continuity equation must
be solved in a geometric height coordinate system.

Applying a vector identity to the mass flux convergence term on the right of Eqn.
B1, using scale analysis for midlatitude synoptic-scale motion (Holton, 1993),
substituting for the air density from the ideal gas law in the second term on the left,
dividing through by the air density, and solving for the vertical gradient of the vertical
velocity from the three dimensional velocity divergence, Eqn. B1 can be written,

dw g 197 _\ dlnp
hALOY - SR Y | v Y )
0z RT+‘1'82) (Ve7) ot (B2)

where all symbols take on their usual definitions and the subscript A is used to signify
that only the horizontal components are considered. Eqn. B2 is a first order, linear, non-
homogeneous differential equation that has a solution,

W,y = exp{- L z‘M C—Tf dz]* Jj‘" (-V oV - %’?)exp[—f —;’- dz’}z + ¥ exp[-f_“l -(-:7% dzjl (B3)



aT
where ¢, = =242 The subscripts i and #+1 represent discrete vertical levels and w1 is

oz
the vertical velocity at the vertical level i+1 determined by solving the right hand side

using the vertical velocity, w;, as a lower boundary condition. Eqn. B3 can be simplified
by bringing the first exponential term on the right within the leading integrand. The
integral arguments of the exponential terms then subtract, changing the limits of
integration in the argument of the exponential. The resulting expression can be written,

- 7 dinp 4 €y ., W€y,
_J' ( 3¢ P[J; -i:dz }12+c* expui T dz :l B4

The solunon of the equauon for the vertical velomty at some ‘level then depends on' the =
vertical profile of horizontal dlvergence, the time rate of change of air density and a
boundary condition. For simplicity of notation, the time rate of change of air density will
be incorporated in to the horizontal divergence in the remaining mathematical
development and the difference of the horizontal divergence and the local air density
tendency will be denoted by the horizontal divergence. The boundary value, ¢, is the
vertical velocity at the bottom or top of the vertical interval depending of the integration
is performed upwards or downwards. The development here will assume an upward
integration. Since the horizontal divergence and temperature are assumed known, this
equation can be solved analytically by accounting for the vertical discretization of the
data.

Following Hermes (1991), the assumption is made that the horizontal divergence
varies linearly between data points according to the following equation,

Divgk) =m,z+B,

where mpy represents the slope of the divergence between data points, and Bp is the
intercept. It must be further assurned that the temperature m the Iayer bemg con51dered

is isothermal with a value rrudway between the temperature at the top and bottom of the
layer. In other words, the assumption is made that the vertical temperature profile is
piecewise isothermal. The impact of these two assumptions will be discussed below.
Applymg the isothermal assumpuon to the temperature profile and evaluatmg the
integrals to the exponennal arguments, Eqn B4 becomes
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= -expl-L "V o) 258y, S
W, = exp{ T Z;, }L (Vofl/ﬁ)exp{ zTo}d‘+w,.*exp{ T Az}

Invoking the piecewise linear assumption to the horizontal divergence, we can write

C, 21 C, Ziel C, C,
- =-expl -—tz. exp‘- —|dz+B exp| -z— |[dz; +wexp| - =L Az
Wl+] X{ Tb zH»l J{mDJ:i z z Tb} D‘L‘ p[ To] } i p[ T;) ]

The two resulting integral terms on the right can now be evaluated analytically,

Y
ex[{- P Zin ]T;) Zial E %
T,
1 0 1/) 0 . 0

(BS)

The sensitivity of Eqn. B5 to the assumptions imposed on the profiles of
temperature and horizontal divergence was examined with several analytical functions.
The sensitivity to the assumption imposed on the temperature profile was found to be
negligible in all cases. The difference in the vertical velocities derived with an analytical
divergence profile and a discrete version of the profile reached a maximum of 0.5 cms-1
only when a single convergence/divergence couplet existed in the vertical column.

A further limitation to the accuracy of Eqn. B5 when applied to wind profiler
network data is the specification of an appropriate lower boundary condition. Since the
lowest data level occurs near 500 m above the local ground level with the WPDN data, a
significant portion of the near-surface layer is not sampled. Therefore, the most obvious
boundary condition, that the vertical velocity at the surface is zero, becomes somewhat
more difficult to impose. Hermes (1991) estimated the vertical velocity across the lower
data boundary using estimates from a radiosonde network. Carlson and Forbes (1989)
reasoned that the vertical motions in the lower stratosphere are typically small in a mass-
weighted sense and solved the continuity equation from the top of the column to the
lowest level. Since the data column observed by the WPDN wind profilers begins near
500 m above ground level (Hermes' data ended at 2.3 km while Carlson's and Forbes'
data ended near 1 km), the horizontal divergence is linearly extrapolated from the lowest

39



data layers to the surface where the vertical velocity is known to be zero. The influence
of sloping terrain is ignored due to the low relief typical of the analysis region.

As noted by numerous investigators (O'Brien, 1970; Holton, 1977; Carlson and
Forbes, 1989; Starr and Wiley, 1990), errors in the horizontal divergence at a particular
level tend to be communicated to all higher levels. This results in large uncertainties in
the calculated vertical motions. Therefore, the technique described by O'Brien (1970) is
applied. This procedure adjusts the profile of horizontal divergence so that the vertical
motion is forced to obey a specified upper boundary condition. Since the WPDN data
generally reaches the lower stratosphere, an upper condition of w=0 is imposed. Using
random error generally expected from objectively analyzed wind profiler and radiosonde
data (£2.5%x10-3 s-1) it was found that the RMS uncertainty in the kinematic vertical
velocity when adjusted by the O'Brien technique was on the order of 2 cms-1.
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Figure Captions

Figure 1. Map showing the locations of wind profiler and radiosonde sites that were
operational during the FIRE II Cirrus Intensive Field Operation during Novemberember
and early December 1991. The blackened squares represent WPDN sites, the open
squares represent operational radiosonde locations and the open diamonds denote the
locations of CLLASS radiosonde sites. Coffeyville, Ks is denoted by a diamond within an
open square.

Figure 2. Scatter diagram of the objectively analyzed horizontal wind components
(abscissa) compared with the wind profiler-observed horizontal wind components
(ordinate). The units are ms-l. The RMS difference in the objectively analyzed
components and the observations is 3.2 ms-1.

Figure 3. a) Amplitude response function of the overdetermined least squares spatial
filter described in the text. The solid circles are the amplitude response of the wind
speed and the open circles denote the amplitude response of the vertical component of
the relative vorticity. b) Arrangement of grid points corresponding to the amplitude
response curves shown in a). The solid circle is the central gridpoint that is being
smoothed by the distribution of surrounding gridpoints.

Figure 4. The synoptic setting for the case study period under consideration. a) 300 mb
heights and wind vectors at 12 UTC 26 November. 1991. b) surface pressure analysis at
12 UTC 26 November. 1991. The contour interval is 4 mb for the surface pressure and
60 m for the thickness. c) 300 mb heights and wind vectors at 00 UTC 27 November.
1991. Plotting convection as in a. d) surface pressure at 00 UTC 27 November. 1991.
Plotting convention as in b.

Figure 5. Infrared satellite imagery. a) 18 UTC 26 November. b) 21 UTC 26
November. ¢) 00 UTC 27 November. 1991.

Figure 6. Horizontal wind vectors and speeds analyzed from the time-space converted
WPDN data at a) 18 UTC 26 November. 1991 and b) 00 UTC 27 November. 1991.
The wind vectors are compass direction and the vector lengths are proportional to wind
speed. The contours are of wind speed in m s-1. The contour interval is 2 m s-1. The
solid squares denote the location of wind profiler observations used in the objective



analysis. The straight solid, dashed and dotted lines in (b) denote the location of
horizontal cross sections discussed discussed later in the text.

Figure 7. 10 km Horizontal divergence and relative vorticity. a) 18 UTC 26 November
horizontal divergence. b) 18 UTC 26 November relative vorticity. ¢) 00 UTC 27
November horizontal divergence and d) 00 UTC 27 November relative vorticity. The
contour interval in (a) and (¢) is 1x10-5 5”1 and in (b) and (d), 4x10-3 s"1. Thick solid

lines denote negative contours.

Figure 8. Natural coordiante components of the horizontal divergence. a) 18 UTC 26
November speed difluence. b) 18 UTC 26 November directional difluence. c¢) 18 UTC
26 November curvature advection. d) 00 UTC 27 November speed difluence. e) 00
UTC 27 November directional difluence. f) 00 UTC 27 November curvature
advection. The plotting convention is as in Figure 7 except that the contour interval for
the curvature advection is 1x10-3 s-1.

Figure 9. Ageostrophic wind and natural coordinate components of the ageostrophic
wind. a) 18 UTC 26 November ageostrophic vectors and speeds. b) 18 UTC 26
November along-stream component. ¢) 18 UTC 26 November cross-stream component.
d) 00 UTC 27 November ageostrophic vectors and speeds. ¢) 00 UTC 27 November
along-stream component. f) 00 UTC 27 November cross stream component. The
vectors in a and d are as in Figure 6 with a contour interval of 10 m s-1. The contour
interval in b, c, e, and f are

5 m s-1 with negative values contoured with thicker lines.

Figure 10. Curvature component of the relative vorticity at 00 UTC 27 November. The
contour interval is 1x10-3 s-1 with negative values contoured with bolder lines.

Figure 11. Horizontal cross section at 21 UTC 26 November along the thick straight
line shown in Figure 6. The cross section is oriented such that the left side of the plot is
the southern end of the solid line in Figure 6b. a) Horizontal wind vectors and speeds.
The vectors are compass direction with north towards the top of the page and the contour
interval is 5 m s-1. b) The cross-stream component of the ageostrophic wind. Contour

interval is
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5ms-1. ¢) The kinematically derived vertical velocity. The contour interval is 2 cm s-
1, d) The ageostrophic circulation vectors derived by combining the fields in (b) and
(c). The vectors are overlain on the potential temperature contoured at a 2 K interval.

Figure 12. Schematic illustration of sign and forcing and sense of the transverse
ageostrophic circulation from the diagnostic Sawyer-Eliassen equation. Ageostrophic
circulation is denoted by solid lines; dashed lines depict an isentrope separating
potentially colder from warmer air. Small circles enclosing x and dot respectively
indicate along-front wind into and out of the cross section. Transverse ageostrophic
circulation is thermodynamically direction in (a) and indirect in (b). (After Keyser and
Shapiro, 1986).

Figure 13. Components and total forcing the Sawyer-Eliassen equation for 21 UTC 26
November 1991. a) Q1, b) Q2 and ¢) Q1+Q2. See text for description of the forcing
terms and their physical significance to the diagnosed ageostrophic circulation.

Figure 14. High cloud visible optical depths derived from GOES data at 18 UTC 26
November.

Figure 15. GOES 7 Infrared imagery showing the progression of the middle and upper
tropospheric cloud system through the Kansas-Oklahoma region at a) 21 UTC 26
November 1991, b) 22 UTC 26 November 1991, ¢) 23 UTC 26 November 1991 and d)
00 UTC 27 November 1991

Figure 16. Kinematic vertical velocity cross sections along the dashed line in Figure 6.
The cross sections are oriented such that the left side of the plot is the western end of the
dashed line in Figure 6. a) 18 UTC 26 November. b) 21 UTC 26 November. c) 00
UTC 27 November. The contour interval is 1 cm s and negative values are contoured
with dashed lines.

Figure 17. Kinematic vertical velocity cross section along the dotted line in Figure 6 at
21 UTC 26 November. The cross section is oriented such that the left side of the plot is
the northern end of the dotted line in Figure 6. The plotting convention is as is Figure
16.
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Figure 18. Time-height cross of reflectivities (dBZe) observed by the Pennsylvania State
University 94 GHz cloud radar from 1800 UTC 26 November. to 0000 UTC 27

November. 1991.

Figure 19. Time series of temperature soundings at Coffeyville, Kansas from 15 UTC 26
November 1991 to 00 UTC 27 November 1991. The profiles are each offset by 100C
with 15 UTC on the left. Also depicted are the relative humidity profiles denoted by the
shading extending to the right of each profile. The humidities are with respect to ice at
temperatures below -20°C and with respect to liquid water at temperatures greater than
0°C. Between these temperatures the humidity is calculated as a linear combination of
ice and liquid water. The shading begins at 40%.

Figure 20. Time-height cross sections of the relative humidity determined as in Figure
19 from 12 UTC 26 November 1991 to 00 UTC 27 November 1991 for a) Coffeyville,
Kansas; b) Iola, Kansas; c) Arkansas City, Oklahoma and d) Muskogee, Oklahoma. See
Figure 1 for the locations of these sites.

Figure 21. Potential temperature profile time series beginning at 12 UTC 26 November
1991 to 00 UTC 27 November 1991 for a) Coffeyville, Kansas; b) Iola, Kansas; c)
Arkansas City, Oklahoma and d) Muskogee, Oklahoma. Each successive profile is offset
by 100C as in Figure 19 and isentropes are drawn every 1K.

Figure 22. Kinematic vertical velocity time-height cross section derived from the wind
profiler horizontal divergence values interpolated to Coffeyville, Kansas. The plot is
from 18 UTC 26 November to 00 UTC 27 November. The contour interval is 2 cm s-1
and the zero contour is dashed.

Figure 23. Ice water content time-height cross section derived from the Heymsfield-
Donner parameterization from 18 UTC 26 November. to 00 UTC 27 November. These
values were determined by forcing the parameterization with the vertical velocities
shown in Figure 22 and the water vapor observed by radiosonde at Coffeyville (Figure
20). No calculations were performed for temperatures above freezing although the
parameterization computes ice water contents at warmer temperatures due to

precipitation from above.
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Figure Al. The geometry considered in the time-space conversion algorithm discussed
in Appendix A.
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Table Caption

Table 1. Comparison between visible optical depths during the local afternoon of 26
November 1991. The values were determined using the cirrus parameterization
described in the text, 30 minute averaged sun photometer data and satellite-observed
visible data. See the text for further explanation.
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Table 1.

Parameterization Sun Photometer Satellite
1845 1.7 1.2 1.1
1915 2.0 1.7 1.9
1945 1.5 3.5 2.8
2019 1.5 3.0 3.6
12045 1.9 1.5 3.4
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Fig. 7a &b

10 km Horizontal Divergence, 18 UTC 26 Nov. 1991
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10 km Horizontal Divergence, 00 UTC 27 Nov. 1991
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Fig. 8a &b

10 km Speed Difluence, 18 UTC 26 Nov. 1991
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10 km Ageostrophic Winds, 18 UTC 26 Nov. 1991
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10 km Along-Stream Ageostrophic Wind
18 UTC 26 Nov. 1991
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10 km Ageostrophic Winds, 18 UTC 26 Nov. 1991
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10 km Curvature Vorticity, 00 UTC 27 Nov. 1991
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Gerald has two other manuscripts in preparation stemming directly from his graduate
work and anticipates submission of these to peer-reviewed journals by the end of this
calendar year.

The interaction that was fostered by the NGESGSP Fellowship with you as Gerald's
fellowship advisor at NASA Goddard proved to be an extremely valuable fringe benefit
of the fellowship. Not only did Gerald benefit by the numerous visits to Goddard, but |
found the exchange of ideas and information between us in relation to Gerald’s work to
be very productive.

Gerald is currently under my employ at The Pennsylvania State University as a post-
doctoral research associate. He plans to seek a faculty position at a university within
the next two years and to continue active research in the area of cloud-climate
interaction.
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